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ABSTRACT

N-tert-Butylsulfonyl and N-tert-butylsulfinyl aziridine undergo r-lithiation/electrophile trapping providing a new entry to terminal aziridines.
With N-tert-butylsulfinyl aziridine complete asymmetric induction is observed r to nitrogen.

Aziridines are an important class of heterocycle currently
receiving increased research interest.1 Terminal aziridines
are particularly useful owing to the ease, generality, and
predictable regioselectivity of their ring-opening reactions
with nucleophiles.2 Currently, there are four conceptually
different synthetic routes to produce N-protected terminal
aziridines 1 (Scheme 1):1b,3 (a) ring-closure of 2-substituted
amines;4 (b) (formal) nitrene transfer to alkenes; (c) (formal)
carbene transfer to imines; and (d) additions to azirines.

Another potentially powerful strategy to terminal aziridines
1 involves R-metalation/electrophile trapping of N-protected
aziridine (strategy e, Scheme 1). One isolated example of
this latter process was described in 1994 by Beak and co-

workers, which involved silylation of N-Boc aziridine using
s-BuLi;5 however, this method was “successful only if the
electrophile, Me3SiCl, was present during the lithiation” – a
major limitation.

Following our investigations into the direct R-deprotona-
tion/electrophile trapping of nonstabilized N-Bus (Bus ) tert-
butylsulfonyl)-protected terminal aziridines,6 we considered
whether further N-protected variants of aziridine itself could
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Scheme 1. Synthetic Strategies to Terminal Aziridines 1
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be lithiated and electrophile trapped.7 In the present paper,
we communicate our promising preliminary results on this
theme.

Initially, lithiation of N-Ts, N-Tris, and N-Boc aziridine
were investigated but, not unexpectedly, these unhindered
(C-unsubstituted) systems underwent mainly dimerization,
ring-opening, or in the N-Boc aziridine case, N-to-C migra-
tion.8 Using N-Bus aziridine 4 (readily accessed on a
multigram scale by tert-butylsulfinylation of 2-chloroethyl-
amine hydrochloride 2, followed by oxidation of the resulting
chlorosulfinamide 3 and ring-closure, Scheme 2) in combina-

tion with s-BuLi/TMEDA9 at low temperature did, however,
produce the first direct external electrophile trapping (deu-
teration) of a simple N-protected, C-unsubstituted aziridine,7

giving deuterated aziridine 5a (90% yield, >95% D, Table
1).

To examine the scope of this process, a range of other
electrophiles were then reacted with lithiated N-Bus aziridine
4-Li (Table 1). Me3SiCl, Bu3SnCl, and PhSO2F gave the
corresponding C-heteroatom-substituted aziridines10 5b-d
in 81%, 86%, and 51% yields, respectively (Table 1, entries
2-4). The structure of aziridinylsulfone 5d was confirmed
with single-crystal X-ray diffraction data.11 Pleasingly, both
nonenolizable and enolizable aldehydes and ketones proved
viable electrophiles to generate a range of aziridinyl alcohols
5e-j (56-96% yield). Aziridinyl ester and ketone structural
motifs 5k,l could also be accessed using methyl cyanoformate
and benzoyl cyanide as electrophiles (entries 11 and 12).12

Reactions illustrating the use of the N-Bus terminal
aziridines 5 in subsequent ring-opening chemistry giving
sulfonamides 6a-d are shown in Scheme 3. Using Grignard
and heteroatomic nucleophiles, ring-opening of aziridinyl
alcohol 5j occurred selectively at the less-hindered ring carbon, whereas with aziridinyl ketone 5l, ring-opening took

place at the more substituted ring carbon (likely due to
transition-state stabilization by the adjacent CdO group).13

For the asymmetric synthesis of terminal aziridines by the
above strategy, we first considered modifying the chemistry
by attempting enantioselective deprotonation.7 Enantio-
selective chiral ligand-induced lithiation/electrophile trapping
of saturated N-protected heterocycles is currently well-
established only for N-Boc pyrrolidine.14 In our hands,14c

addition of N-Boc aziridine to premixed s-BuLi and (-)-
sparteine in ethereal solvents at low temperature, followed
by an electrophile, consistently resulted only in isolation of
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Scheme 2. Synthesis of N-Bus Aziridine 4

Table 1. Terminal Aziridines 5 by R-Lithiation of N-Bus
Aziridine 4
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3,5-dimethylheptan-4-one, arising from reaction of s-BuLi
at the Boc group. Adding a mixture of N-Bus aziridine 4
and Me3SiCl (1.2 equiv) dropwise via cooled cannula to a
premixed solution of s-BuLi/(-)-sparteine (1.2 equiv) in THF
at -105 °C did form aziridinylsilane 5b in 38% yield, but
with a negligible er.11 We therefore considered using a chiral
N-protecting group that might activate and bias the ring to
(highly) diastereoselective deprotonation.15 Aware of the high
levels of diastereocontrol often observed during the addition
of nucleophiles to N-tert-butylsulfinyl imines,4,16 we felt that
the tert-butylsulfinyl group might fulfill such a role.

First, a direct synthesis of N-tert-butylsulfinyl aziridine 7
in either enantiomeric form and in one step from commercial
starting materials was developed (Scheme 4).17 Deprotona-
tion of (RS)-7 using s-BuLi/TMEDA in THF at -98 °C and
trapping with CD3OD gave the anticipated 2-deuteroaziridine
8a; however, yields proved to be variable under these
conditions (potentially due to attack at the sulfinyl group by
the organolithium).18 Moving to the less nucleophilic base
LTMP (lithium 2,2,6,6-tetramethylpiperidide) in combination
with TMEDA19 improved the yields, and after a 25 min
lithiation time at -98 °C the desired 2-deuteroaziridine 8a
was generated in 81% yield with >90% D-incorporation.
Using the symmetrical ketone pentan-3-one as the electro-

phile gave aziridinyl alcohol 8b in 53% yield and, signifi-
cantly, only a single diastereomer was observed in the crude
1H and 13C NMR spectra. Analysis of single-crystal X-ray
diffraction data for aziridinyl alcohol 8b allowed the deter-
mination of the absolute configuration (RS,R), as shown in
Scheme 4.11,20 Confirmation of the highly diastereoselective
nature of the lithiation/electrophile trapping was obtained by
m-CPBA-mediated oxidation of crude aziridinyl alcohol 8b
to the N-Bus aziridinyl alcohol 5j (>99:1 er, by chiral HPLC
analysis of the 2-thionaphthalene ring-opened derivative
6c).11

Several other electrophiles were successfully trapped out
using (RS)-7-Li giving adducts 8c-g with similarly complete
control at the newly generated aziridine stereocenter (Scheme
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Scheme 3. Ring-Opening of N-Bus Terminal Aziridines 5 Scheme 4. Studies with N-tert-Butylsulfinyl Aziridine (RS)-723
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4).12,21 While low asymmetric induction was seen at the
carbinol carbon in the aziridinyl alcohols 8d,e arising from
addition of (RS)-7-Li to prochiral aldehydes, Swern oxidation
of 8d could be used to subsequently generate the corre-
sponding diasteromerically pure sulfinyl ketone11 in 78%
yield.22

A tentative explanation of the diastereoselectivity observed
in lithiation/electrophile trapping with N-tert-butylsulfinyl
aziridine (RS)-7 is indicated in Scheme 5. LTMP may
coordinate to the sulfinyl oxygen of (RS)-7 and form a
prelithiation complex in which a pro-R hydrogen on the
aziridine is closer than a pro-S hydrogen to the lithium amide,
thereby minimizing nonbonded interactions between the tert-
butyl group and the sterically demanding base. Following
deprotonation, the lithiated aziridine undergoes electrophile
trapping with retention of configuration.

Reaction of aziridinyl alcohols 8b,g with 2-thionaphthalene
and PhMgBr gave secondary sulfinamides 9a,b, respectively,
illustrating regioselective ring-opening and also demonstrat-
ing that preoxidation to the more electron-withdrawing N-Bus
group is not required for such chemistry (Scheme 6). Sulfinyl
deprotection of the Grignard-derived adduct 9b using HCl
in dioxane generates 1,2-amino alcohol 10 in which the
potentially acid-sensitive tertiary alcohol functionality is
preserved.

In summary, this work demonstrates a new access to
terminal aziridines by ring-lithiation of N-sulfonyl and
N-sulfinyl protected aziridine, and the products have been
shown to undergo a range of synthetically useful ring-
opening reactions with nucleophiles. The R-lithiation/elec-

trophile trapping of N-tert-butylsulfinyl aziridine 7 to provide
terminal aziridines 8 is notable not only for overcoming the
ring-opening and sulfenic acid elimination pathways previ-
ously observed in related systems,18a but also for the
controlled stereocenter generation adjacent to nitrogen by
electrophile incorporation. The latter suggests further op-
portunities for sulfinamide group utilization in asymmetric
synthesis beyond its current importance in sulfinyl imines
for stereocontrolled nucleophile incorporation R to nitro-
gen.16,24
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Scheme 5. Possible Origin of Diastereoselectivity in the
Lithiation/Electrophile Trapping of N-tert-Butylsulfinyl Aziridine

(RS)-7

Scheme 6. Ring-Opening of N-tert-Butylsulfinyl Terminal
Aziridines 8
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